Basic Action Theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Basic Action Theories

In this paper we design a representation that allows writing more compact and modular basic action theories, than it is currently possible. Moreover, such representation also provides formal foundations for reasoning about actions in OpenCyc by using Reiter’s basic action theory formalism.

متن کامل

Basic module theory

(c) μ(rs,m) = μ(r, μ(s,m)) (d) if 1 ∈ R, then μ(1,m) = m. We shall usually omit the notation of μ and simply write r ·m for μ(r,m). Thus axiom (c) would be written (rs) ·m = r · (s ·m), etc. Exercise 1. We denote by EndGrp(M) the set of group endomorphisms of M : An element φ ∈ EndGrp(M) is a group homomorphism φ : M → M . EndGrp(M) is naturally a ring, with addition and multiplication defined ...

متن کامل

Group Theory: Basic Concepts

⋆ Group: (G, γ) where G is a set and γ a binary operation γ : G×G → G. If γ is clear from the context the group is simply denoted by G. ◦ In place of γ(f, g) write fγg or simply fg when there is no ambiguity, as in most of what follows. ◦ Example: G = Z = {. . .− 2,−1, 0, 1, 2 . . .}, γ = +, γ(f, g) = f + g. • For G to be a group three conditions must be satisfied: (i) γ is associative: γ(f, γ(...

متن کامل

Basic Theory of Magnets

The description of two dimensional magnetic fields of magnets used in accelerators is discussed in terms of a harmonic expansion. The expansion is derived for cylindrical components and extended to Cartesian components. The Cartesian components are also described in terms of a complex field. The rules for transformation of the expansion coefficients under various types of coordinate transformat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BRICS Report Series

سال: 1995

ISSN: 1601-5355,0909-0878

DOI: 10.7146/brics.v2i25.19927